HOPF EXTENSIONS OF ALGEBRAS AND MASCHKE TYPE THEOREMS

BY YUKIO DOI Fukui University, Fukui 910, Japan

ABSTRACT

Let B/C be an A-extension for a Hopf algebra A. We consider two Maschketype questions: first, for an exact sequence of (A, B)-Hopf modules which splits B-linearly, when does it split (A, B)-linearly? Second, for an exact sequence of B-modules which splits C-linearly, when does it split B-linearly? Finally, we consider when the pair of the restriction functor from mod-B to mod-C and the induction functor $() \otimes_C B$ is an adjoint pair of functors.

We shall discuss two different types of Maschke theorems for Hopf algebras, with some applications. Let A be a Hopf algebra over a commutative ring R and B/C an A-extension. In §1 we first show that for every exact sequence of (A, B)-Hopf modules which splits B-linearly, it also splits (A, B)-linearly if there exists a total integral satisfying some specific conditions. As an application in the case when R is a field, we get that an (A, B)-Hopf module is finitely generated projective as a B-module if and only if it is a Hopf module direct summand of $W \otimes B$ for some finite dimensional A-comodule W. We next prove that if A is R-flat, there exists a total integral ϕ with $\phi(A) \subset Z(B)$, and the map $\beta: B \otimes_C B \to B \otimes A$, $b' \otimes b \to \Sigma b'b_0 \otimes b_1$, is surjective, then β is bijective, that is, B/C is A-Galois.

In §2 we assume the Hopf algebra A is finitely generated projective over R. We first extend "Maschke's Theorem" for group crossed products [Pas, Lemma 1.1] to the case of Hopf Galois extensions. In particular, if there exists a right integral Λ in A with $\varepsilon(\Lambda) = 1$, then every A-Galois extension is a separable extension. Finally we prove that if the dual Hopf algebra A^* has a

nonzero left integral which is unique up to a scalar multiple, as is the case when Pic(R) = 0, and B/C is an A-Galois extension, then the pair of the restriction functor from mod-B to mod-C and the induced functor $(-) \otimes_C B$ is an adjoint pair of functors.

We freely use the notations of [S] and [D1].

§1. Throughout, A denotes a Hopf algebra over a commutative ring R with comultiplication Δ , counit ε , and antipode S. We denote by B/C an A-extension B of an R-algebra C; thus B is a right A-comodule algebra with $C = \{b \in B \mid \rho_B(b) = b \otimes 1\}$. Let \mathcal{M}_B^A denote the category of right (A, B)-Hopf modules; thus an object is a right B-module M which is also a right A-comodule such that $\rho_M(mb) = \sum m_0 b_0 \otimes m_1 b_1$ for $m \in M$ and $b \in B$, and a morphism is a B-module map which is also an A-comodule map.

We now assume that there exists a total integral $\phi: A \to B$, i.e., $\rho_B \phi = (\phi \otimes id)\Delta$ and $\phi(1) = 1$. For $M \in \mathcal{M}_B^A$, we define the trace map associated with ϕ as follows;

$$\operatorname{tr}_{M}: M \to M, \quad m \to \sum m_0 \phi(S(m_1)).$$

We have that $\operatorname{tr}_{M}(m)$ lies in $M_{0} = \{ m \in M \mid \rho_{M}(m) = m \otimes 1 \}$ since

$$\rho_{M}(\operatorname{tr}_{M}(m)) = \sum m_{0}\phi(S(m_{3})) \otimes m_{1}S(m_{2}) = \sum m_{0}\phi(S(m_{2})) \otimes \varepsilon(m_{1})1$$
$$= \operatorname{tr}_{M}(m) \otimes 1.$$

Furthermore, the condition $\phi(1) = 1$ implies that tr_M is the identity on M_0 . In particular, $\operatorname{tr}_B: B \to C$ is a left C-module projection, hence C is a left C-module direct summand of B. Note that M_0 is a right C-module and if $\phi(A) \subset B^c$, the centralizer of C in B, then tr_M is a right C-module map from M onto M_0 .

Let $M \in \mathcal{M}_B^A$ and $V \subset M_0$ be a C-submodule of M_0 . For $m \in VB \cap M_0$, we have $m = \operatorname{tr}_M(m) \in \operatorname{tr}_M(VB) \subset VC \subset V$. It follows that $VB \cap M_0 = V$. Hence, if M is artinian (or noetherian) as a B-module then it is artinian (or noetherian) as a C-module.

For every $M \in \mathcal{M}_B^A$, we can view $M \otimes A$ as a right (A, B)-Hopf module by $(m \otimes a) \cdot b = \sum mb_0 \otimes ab_1$ and $\rho_{M \otimes A}(m \otimes a) = \sum m \otimes a_1 \otimes a_2$, and then $\rho_M : M \to M \otimes A$ becomes a morphism of \mathcal{M}_B^A . We now define

$$q_M: M \otimes A \to M$$
, $m \otimes a \to \sum m_0 \phi(S(m_1 S(a)))$.

LEMMA. (1) $q_M \rho_M = \mathrm{id}_M$.

(2) If $\phi(A) \subset Z(B)$, the center of B, then q_M is a B-module map, i.e., $q_M(m \otimes a)b = \sum q_M(mb_0 \otimes ab_1)$. Furthermore, the following diagram is commutative:

$$\begin{array}{c|c}
M \otimes_C B & \xrightarrow{\beta_M} & M \otimes_A \\
\text{tr}_M \otimes_C \text{id} & q_M \\
M_0 \otimes_C B & \xrightarrow{\Psi_M} & M
\end{array}$$

where we define $\beta_M(m \otimes b) = \sum mb_0 \otimes b_1$ and $\Psi_M(m \otimes b) = mb$.

- (3) q_M is a morphism of \mathcal{M}_B^A if either of the following two conditions is fulfilled:
 - (i) A is involutory (i.e., $S^2 = id$), $\phi(A) \subset Z(B)$ and

$$\phi(aa') = \phi(a'a)$$
 for all $a, a' \in A$,

(ii) B is faithful as an R-module and $\phi(A) \subset R$.

PROOF. (1) Let $m \in M$. Then

$$q_{M}(\rho_{M}(m)) = \sum m_{0}\phi(S(m_{1}S(m_{2}))) = \sum m_{0}\phi(S(\varepsilon(m_{1})1)) = m\phi(S(1)) = m.$$

(2) We have

$$q_{M}(\Sigma mb_{0} \otimes ab_{1}) = \Sigma m_{0}b_{0}\phi(S(m_{1}b_{1}S(ab_{2})))$$

$$= \Sigma m_{0}b_{0}\phi(S(m_{1}b_{1}S(b_{2})S(a)))$$

$$= \Sigma m_{0}b\phi(S(m_{1}S(a)))$$

$$= q_{M}(m \otimes a)b \quad \text{(by } \phi(A) \subset Z(B)).$$

which shows the first assertion. The diagram clearly commutes from this.

(3) By (2), it suffices to verify that q_M is an A-comodule map.

If (i) holds, then $q_M(m \otimes a) = \sum m_0 \phi(S(m_1)a)$, and hence

$$\rho_{M}q_{M}(m \otimes a) = \sum m_{0}\phi(S(m_{3})a_{1}) \otimes m_{1}S(m_{2})a_{2} = \sum m_{0}\phi(S(m_{1})a_{1}) \otimes a_{2}$$
$$= \sum q_{M}(m \otimes a_{1}) \otimes a_{2}.$$

Next suppose that (ii) holds. In this case, we have for $a \in A$, $\Sigma \phi(a_1)a_2 = \phi(a)1$, and so $\Sigma \phi(S(a_2))S(a_1) = \phi(S(a))1$. If we let $\lambda = \phi S$, then we have

$$\Sigma a_1 \lambda(a_2) = \Sigma a_1 \phi(S(a_2)) = \Sigma a_1 S(a_2) \phi(S(a_3)) = \Sigma \varepsilon(a_1) \phi(S(a_2)) 1$$
$$= \phi(S(a)) 1 = \lambda(a) 1.$$

Thus we get for all $a \in A$,

$$\sum a_1 \lambda(a_2) = \lambda(a)1.$$

Using this we show that q_M is an A-comodule map. Indeed,

$$(q_{M} \otimes \mathrm{id}) \rho_{M \otimes A}(m \otimes a) = \sum m_{0} \lambda(m_{1} S(a_{1})) \otimes a_{2} = \sum m_{0} \otimes \lambda(m_{1} S(a_{1})) a_{2}$$

$$= \sum m_{0} \otimes m_{1} S(a_{2}) \lambda(m_{2} S(a_{1})) a_{3} = \sum m_{0} \otimes m_{1} \lambda(m_{2} S(a))$$

$$= \sum m_{0} \lambda(m_{2} S(a)) \otimes m_{1} = \rho_{M} q_{M}(m \otimes a).$$

We next remove the commutativity hypothesis from [D1, Theorem (1.6)] obtaining a Maschke type theorem for Hopf modules.

THEOREM 1. Let B/C be an A-extension with a total integral ϕ , and suppose that (i) or (ii) above holds. Then for every exact sequence of (A, B)-Hopf modules

$$0 \rightarrow M \rightarrow N \rightarrow P \rightarrow 0$$

which splits B-linearly, it also splits (A, B)-linearly.

PROOF. We will show that if $j: M \to N$ is a morphism of \mathcal{M}_B^A such that there exists a B-module map $p: N \to M$ with $pj = \mathrm{id}_M$, then there exists a morphism $\tilde{p}: N \to M$ in \mathcal{M}_B^A such that $\tilde{p}j = \mathrm{id}_M$. Define $\tilde{p}: N \to M$ by $\tilde{p} = q_M(p \otimes \mathrm{id})\rho_N$. Then for $n \in N$ and $b \in B$,

$$\tilde{p}(nb) = q_M(\sum p(n_0)b_0 \otimes n_1b_1)$$
 (since p is B -linear)
$$= q_M(\sum p(n_0) \otimes n_1)b$$
 (by (2) of Lemma)
$$= \tilde{p}(n)b, \text{ thus } \tilde{p} \text{ is a } B\text{-module map.}$$

Moreover we have

$$\rho_{M} \tilde{p} = \rho_{M} q_{M} (p \otimes id) \rho_{N}$$

$$= (q_{M} \otimes id) (id \otimes \Delta) (p \otimes id) \rho_{N} \quad \text{(since } q_{M} \text{ is an } A\text{-comodule map)}$$

$$= (q_{M} \otimes id) (p \otimes id \otimes id) (id \otimes \Delta) \rho_{N}$$

$$= (q_M \otimes \mathrm{id})(p \otimes \mathrm{id} \otimes \mathrm{id})(\rho_N \otimes \mathrm{id})\rho_N$$
$$= (\tilde{p} \otimes \mathrm{id})\rho_N,$$

this shows that \tilde{p} is an A-comodule map.

Finally, $\tilde{p}j = q_M(p \otimes id)\rho_N j = q_M(p \otimes id)(j \otimes id)\rho_M = q_M \rho_M = id_M$ (by (1) of Lemma).

We do not know whether Theorem 1 holds for the more general hypothesis $\phi(A) \subset Z(B)$.

As an application of Theorem 1, we obtain a characterization that an (A, B)-Hopf module be projective as a B-module:

THEOREM 2. Assume R is a field. Let B/C be an A-extension with a total integral ϕ , and suppose that the condition (i) or (ii) holds. Then an (A, B)-Hopf module P is projective as a B-module if and only if P is an (A, B)-Hopf module direct summand of $W \otimes B$ for some A-comodule W, where $W \otimes B$ is considered as (A, B)-Hopf module via $(w \otimes b)b' = w \otimes bb'$ and $\rho_{w \otimes B}(w \otimes b) = \sum w_0 \otimes b_0 \otimes w_1 b_1$. Moreover we may assume that the above W is finite dimensional when P is a finitely generated B-module.

PROOF. The "if" part is obvious since $W \otimes B$ is a free B-module. To prove the "only if" part, let $G \subset P$ be a subset that generates P as a B-module. Let W be the smallest A-subcomodule of P containing G. We know that if G is a finite set then W is finite dimensional. Observe that the map $W \otimes B \to P$, $w \otimes b \to wb$, is a surjective morphism of \mathcal{M}_B^A . Since P is B-projective, it follows from Theorem 1 that P is an (A, B)-Hopf module direct summand of $W \otimes B$.

REMARK. Theorems 1 and 2 are very close in spirit to [B, Proposition (6.6) and Corollary (6.7)], with the Hopf algebra A replaced by a reductive group acting on an affine scheme Spec(B).

Recall that an A-extension B/C is said to be A-Galois if the map $\beta: B \otimes_C B \to B \otimes A$, $b' \otimes b \to \sum b' b_0 \otimes b_1$, is bijective. The next result is an application of (2) in Lemma, and is an improvement of [D1, Theorem (2.5)].

THEOREM 3. Let A be a Hopf algebra which is a flat R-module. Let B/C be an A-extension such that there exists a total integral $\phi: A \to B$ with $\phi(A) \subset Z(B)$. If the map β is surjective then it is bijective, that is, B/C is an A-Galois extension.

PROOF. We first note that for any $M \in \mathcal{M}_B^A$, the map $\Psi_M : M_0 \otimes_C B \to M$, $m \otimes b \to mb$, is surjective. This follows from the commutativity of the diagram in (2) of Lemma, since β_M (and q_M) is surjective by $\beta_M = \mathrm{id}_M \otimes_B \beta$.

Let N be the kernel of Ψ_M . Since Ψ_M is a morphism of \mathcal{M}_B^A and A is a flat R-module, N becomes a right (A, B)-Hopf module, and hence $\Psi_N : N_0 \otimes_C B \to N$ is surjective. But we must have $N_0 = 0$ since $(M_0 \otimes_C B)_0 = M_0$ [DT, the proof in (2.11)(b)], and so we obtain N = 0. Thus Ψ_M is bijective for any $M \in \mathcal{M}_B^A$. In particular, β is bijective since we may identify $\beta = \Psi_{B \otimes A}$ [D1, (2.3)].

EXAMPLE. A = RG, a group algebra (G not necessarily finite). It is well known that an A-extension of an algebra C is precisely a G-graded algebra $B = \bigoplus_{g \in G} B_g$ with $B_1 = C$ via $\rho(b) = \sum_{g \in G} b_g \otimes g$, and the category \mathcal{M}_B^A is precisely the category of G-graded B-modules. Any R-linear map $\phi: RG \to B$ is determined by the image of G under ϕ , and it is easy to see that ϕ is a total integral if and only if $\phi(g) \in B_g$ for all $g \in G$ and $\phi(1) = 1$. Thus all RG-extensions have total integrals. For instance, if we set ψ by $\psi(g) = \delta_{g,1}$, then this is a total integral. Hence we may use Theorem 1 so that if $N \subset M$ are G-graded B-modules such that N has a B-complement in M, then it has a (G, B)-complement in M, as is well known. Theorem 3 tells us that an RG-Galois extension means strongly G-graded algebra, which is due to Ulbrich [U]. It is easy to see that a total integral $\phi: RG \to B$ is convolution-invertible if and only if $\phi(g) \in B_g \cap U(B)$ for all $g \in G$. Thus an RG-cleft extension of C [cf. D2] is nothing but a group crossed product $C \bigstar G$.

§2. We assume throughout this section that A is a finitely generated projective Hopf algebra over a commutative ring R. An element $\Lambda \in A$ is called a right integral if $\Lambda a = \varepsilon(a)\Lambda$ for all $a \in A$. The Hopf algebra A has a non-zero right integral, as is the case when R is a field.

In [Pas, Lemma 1.1], Maschke's classical theorem on group algebras of finite groups was extended to crossed products $C \bigstar G$. We first extend this to the case of Hopf Galois extensions B/C, with essentially the same proof:

THEOREM 4. Let $\Lambda \subseteq A$ be a non-zero right integral and B/C an A-Galois extension. Let $V' \subset V$ be right B-modules having no $\varepsilon(\Lambda)$ -torsion. If V' is a C-module direct summand of V, then there exists a B-submodule U of V such that $V' \oplus U$ is essential in V as a C-module. Furthermore, if $V = V\varepsilon(\Lambda)$, then V' is a B-module direct summand of V.

PROOF. Let $\Sigma x_i \otimes y_i \in B \otimes_C B$ be the element such that $1 \otimes \Lambda = \beta(\Sigma x_i \otimes y_i)$. Then we claim that the following formulas hold:

- (a) $\sum bx_i \otimes y_i = \sum x_i \otimes y_i b$ for all $b \in B$,
- (b) $\sum x_i y_i = \varepsilon(\Lambda) 1$.

Indeed, we have $\beta(\sum bx_i \otimes y_i) = b \otimes \Lambda$ since β is a left *B*-module map. On the other hand,

$$\beta(\sum x_i \otimes y_i b) = (1 \otimes \Lambda)\rho_B(b) = \sum b_0 \otimes \Lambda b_1 = \sum b_0 \otimes \varepsilon(b_1)\Lambda = b \otimes \Lambda.$$

Thus (a) follows from the injectivity of β . (b) follows immediately from $(id \otimes \varepsilon)\beta$.

Thus a standard argument shows that for any *B*-module V_1 , V_2 , and any *C*-module map $p: V_1 \rightarrow V_2$, we can form the *B*-module map;

(c)
$$\tilde{p}: V_1 \to V_2, v \to \Sigma \ p(vx_i)y_i$$
.

Now let $p: V \to V'$ be a C-module map such that p(v') = v' for all $v' \in V'$. Then $\tilde{p}(v') = \sum p(v'x_i)y_i = \sum v'x_iy_i = v'\varepsilon(\Lambda)$. Hence if $U = \text{Ker}(\tilde{p})$ then U is a B-submodule with $U \cap V' = 0$ since V has no $\varepsilon(\Lambda)$ -torsion. We also have that $V \in (\Lambda) \subset U \oplus V'$ since $v\varepsilon(\Lambda) - \tilde{p}(v) \in U$ for all $v \in V$. It follows that $U \oplus V'$ is essential in V as a C-module. Especially if $V = V\varepsilon(\Lambda)$ then $V = U \oplus V'$ and so V' is a B-module direct summand of V.

REMARK. As a consequence we obtain that every Galois extension B/C is a separable extension for A having a right integral Λ in A with $\varepsilon(\Lambda)^{-1} \in R$. If C is artinian then so is B because B is finitely generated as a left (or right) C-module [KT, Theorem (1.7)]. Consequently if C is semisimple artinian then so is B. This is a generalization of [BM, Theorem 2.6] since Hopf crossed products $C \#_{\sigma} A$ are A-Galois extensions of C.

More generally, for any finitely generated projective Hopf algebra A, the author and M. Takeuchi have obtained in [DT, Theorem (3.14)] a necessary and sufficient condition for an A-Galois extension B/C to be separable, using the method of Miyashita-Ulbrich actions.

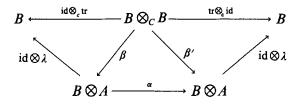
We next consider the induced functor $F = (-) \otimes_C B$: mod- $C \to \text{mod-}B$ and the restriction functor $H: \text{mod-}B \to \text{mod-}C$. F is always a left adjoint of H. It is interesting to ask when F is a right adjoint of H [RR, 1.1(B)]. We shall give a positive answer to this question.

We denote by A^* the dual Hopf algebra of A. A^* is a left A^* -module by multiplication, and hence a right A-comodule. Also we regard A^* as a right A-module where $(a^*-a)(a')=a^*(a'S(a))$ for $a^*\in A^*$ and $a,a'\in A$. Then A^* becomes a right Hopf module over A, and hence $J\otimes A\to A^*$, $\lambda\otimes a\to \lambda-a$, is

an isomorphism as A-Hopf modules [S, Section 4.1; Par, Section 3; KT, (1.1)(ii)], where J denotes the space of all left integrals in A^* . Consequently J is a finitely generated projective rank 1 R-module. Assume that J is a free R-module (e.g., $\operatorname{Pic}(R) = 0$). Take λ ($\neq 0$) $\in J$. Then $\Theta: A \to A^*$, $a \to \lambda \vdash a$, is a right A-module and right A-comodule isomorphism. Let $\Lambda \in A$ be the element satisfying $\lambda \vdash \Lambda = \varepsilon$. Then we have:

LEMMA. (i) Λ is a right integral with $\lambda(\Lambda) = 1 = \lambda(S(\Lambda))$.

- (ii) Let B/C be an A-Galois extension, and let $\Sigma x_i \otimes y_i = \beta^{-1}(1 \otimes \Lambda)$. Also we define $\operatorname{tr}(b) = \Sigma b_0 \lambda(b_1)$ for each $b \in B$. Then tr is a C-bimodule map from B onto C, and the following formula holds:
 - (d) $\sum x_i \operatorname{tr}(y_i) = 1 = \sum \operatorname{tr}(x_i) y_i$.
- PROOF. (i) Since $\Theta(\Lambda a) = \Theta(\Lambda) a = \varepsilon a = \varepsilon(a)\varepsilon = \varepsilon(a)\Theta(\Lambda) = \Theta(\varepsilon(a)\Lambda)$ for all $a \in A$, hence Λ is a right integral. Substituting 1 to $\lambda \Lambda = \varepsilon$, we have $\lambda(S(\Lambda)) = 1$.
- Since $\Theta: A \to A^*$ is a right A-comodule map it is a left A^* -module map, where we regard A as a left A^* -module via $a^* \to a = \sum a_1 a^*(a_2)$ for $a^* \in A^*$, $a \in A$. It follows that $\Theta^{-1}(a^*) = a^* \to \Lambda$ since $\Theta(a^* \to \Lambda) = a^*\Theta(\Lambda) = a^*\varepsilon = a^*$. In particular, we have $\lambda \to \Lambda = \Theta^{-1}(\lambda) = \Theta^{-1}\Theta(1) = 1$, so $\sum \Lambda_1 \lambda(\Lambda_2) = 1$. Applying ε to this, we get $\lambda(\Lambda) = 1$. We note that this argument is similar in spirit to [LR, Proposition 1.1].
- (ii) By the definition of left integrals in A^* , $a^*\lambda = a^*(1)\lambda$ for all $a^* \in A^*$, equivalently we have $\sum a_1\lambda(a_2) = \lambda(a)1$ for all $a \in A$. From this it is easy to see that tr(b) is in C and tr is a C-bimodule map. Furthermore we have the following commutative diagram:



here maps β' and α are defined by $\beta'(b \otimes b') = \sum b_0 b' \otimes b_1$ and $\alpha(b \otimes a) = \sum b_0 \otimes b_1 S(a)$. Combining this with $\lambda(\Lambda) = 1 = \lambda(S(\Lambda))$ above, we obtain the formula (d).

Theorem 5. Let A be a finitely generated projective Hopf algebra over R such that the space of all left integrals in A^* is a free R-module. Let B/C be an A-

Galois extension, and let V be a right B-module and W a right C-module. Then there exists an R-module isomorphism

$$\operatorname{Hom}_{\mathcal{C}}(V, W) \to \operatorname{Hom}_{\mathcal{B}}(V, W \otimes_{\mathcal{C}} B)$$

which is functorial in V and W.

PROOF. For $f \in \operatorname{Hom}_{\mathcal{C}}(V, W)$, we define a B-module map $\xi(f): V \to W \otimes_{\mathcal{C}} B$ by $\xi(f) = (\Phi_W f)^{\sim}$ (see (c) in the proof of Theorem 4), where $\Phi_W: W \to W \otimes_{\mathcal{C}} B$, $w \to w \otimes_{\mathcal{C}} 1$, thus $\xi(f)(v) = \sum f(vx_i) \otimes_{\mathcal{C}} y_i$. Conversely, for $g \in \operatorname{Hom}_{\mathcal{B}}(V, W \otimes_{\mathcal{C}} B)$, define $\eta(g) \in \operatorname{Hom}_{\mathcal{C}}(V, W)$ by $\eta(g) = (\operatorname{id} \otimes_{\mathcal{C}} \operatorname{tr})g$. Then we have for all $v \in V$,

$$\eta(\xi(f))(v) = (\mathrm{id} \otimes_C \mathrm{tr})(\Sigma f(vx_i) \otimes y_i) = \Sigma f(vx_i)\mathrm{tr}(y_i) = \Sigma f(vx_i \mathrm{tr}(y_i)) = f(v)$$
(by (d)).

Let $v \in V$. If we denote $g(v) = \sum w_i \otimes_C b_j$ then for all $b \in B$ we have $g(vb) = \sum w_i \otimes_C b_j b$. It follows that

$$\xi(\eta(g))(v) = \sum (\mathrm{id} \bigotimes_C \mathrm{tr}) g(vx_i) \bigotimes_C y_j$$

$$= \sum_{i,j} w_i \, \mathrm{tr}(b_j x_i) \bigotimes_C y_i$$

$$= \sum_{i,j} w_i \bigotimes_C \mathrm{tr}(b_j x_i) y_i$$

$$= \sum_j w_j \bigotimes_C \left(\sum_i \mathrm{tr}(x_i) y_i\right) b_j \qquad \text{(by (a))}$$

$$= g(v) \qquad \text{(by (d))}.$$

This shows that $\eta \xi$ and $\xi \eta$ both are identities, so that we have our desired isomorphism, which is clearly functorial in V and W.

ACKNOWLEDGMENT

The author wishes to thank the referee for some valuable comments.

REFERENCES

[B] H. Bass, Algebraic group actions on affine spaces, in Contemporary Mathematics, Vol. 43, Am. Math. Soc., 1985, pp. 1-23.

[BM] R. J. Blattner and S. Montgomery, Crossed products and Galois extensions of Hopf algebras, Pacific J. Math. 137 (1989), 37-54.

[D1] Y. Doi, Algebras with total integrals, Commun. Algebra 13 (1985), 2137-2159.

- [D2] Y. Doi, Equivalent crossed products for a Hopf algebra, Commun. Algebra. 17 (1989), 3053-3085.
- [DT] Y. Doi and M. Takeuchi, Hopf-Galois extensions of algebras, the Miyashita-Ulbrich action, and Azumaya algebras, J. Algebra 121 (1989), 488-516.
- [KT] H. F. Kreimer and M. Takeuchi, Hopf algebras and Galois extensions of an algebra, Indiana Math. J. 30 (1981), 675-692.
- [LR] R. G. Larson and D. E. Radford, Finite dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple, J. Algebra 117 (1988), 267-289.
- [Par] B. Pareigis, When Hopf algebras are Frobenius algebras, J. Algebra 18 (1971), 588-596
- [Pas] D. S. Passman, It's essentially Maschke's theorem, Rocky Mountain J. Math. 13 (1983), 37-54.
- [RR] I. Reiten and C. Riedtmann, Skew group algebras in the representation theory of artin algebras, J. Algebra 92 (1985), 224-282.
 - [S] M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
- [U] K.-H. Ulbrich, *Vollgraduierte Algebren*, Abhand. Math. Sem. Universitat Hamburg 51 (1981), 136-148.